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A"'ct-The complete solution is presented for the transient effects of pumping ftuid at a constant
rate from a point sink embedded in a saturated, porollS elastic half space. It is assumed that the
medium is homogc:neollS and isotropic with respect to its elastic properties and homopncollS but
anisotropic with respect to the ftow of pore ftuid. The soil skeleton is modelled as an isotropic
linear elastic material obeying Hooke's law while the pore ftuid may be compressible with its ftow
governed by Darcy's law. The solution has been evaluated for a particular value of Poisson's ratio
of the solid skeleton, i.e. 0.25, and the results have been presented graphically in the form of
isochroncs of excess pore pressure and surface profile for the half space. The solutions presented
may have application in practical problems such as dewatering operations in compressible soil and
rock masses and in the extraction of petroleum products from the CfllSt of the earth.

1. INTRODUCTION

In geotechnical, hydraulic and petroleum engineering it is sometimes necessary to pump
water or some other fluid from the ground. This may be for a variety of reasons including:

(a) obtaining supplies of water. oil or gas.
(b) reducing pore water pressures in the ground,
(c) lowering the water table in order to allow construction operations to proceed.

In order to remove pore fluid from the ground it is necessary to reduce the pressure
in the fluid in the vicinity of the pump and so there will in general be an increase in the
compressive effective stress state. This increase of effective stress will cause consolidation
of the ground and may lead to large-scale subsidence. The decrease in pore pressure will
not occur immediately. After pumping has commenced the pore pressures will gradually
decrease below their initial in situ values until a steady state distribution is established.
Hence the resultant consolidation and surface subsidence will be time dependent.

Probably the best known examples of this phenomenon occur in Bangkok. Venice
and Mexico City where widespread subsidence has been caused by withdrawal of water
from aquifiers for industrial and domestic purposes. Recorded settlements in Mexico City
have reached rates of S-6cm per year[l]. However. the problem is more widespread than
this with subsidence due to fluid extraction having been reported in a number of other
regions of the world[2-S]. The problem is not exclusively caused by the extraction
of groundwater; the withdrawal of petroleum, air and gas can also induce surface
subsidence[6].

The purpose of this paper is to provide the complete solution for the transient effects
of pumping fluid from a point sink embedded in a saturated porous elastic half space. The
problem is defined in Fig. 1. In obtaining this solution proper account has been taken of
the coupling of the pore fluid flow with the deformation of the solid skeleton. It bas been
assumed that the saturated medium is homopneous with respect to its elastic properties
and homogeneous but transversely isotropic with respect to the 80w of pore fluid so that
one value of permeability has been assumed for flow in any horizontal plane and another
value for vertical flow. Furthermore. it has been assumed that the pore 8uid may be
compressible and that the half space remains saturated.

The point sink problem treated here is of course an extreme idealization of any real
situation. Nevertheless. it is considered that investigations of this type have much value in
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Fig. 1. Problem definition.

that their very lack of complexity allows an uncluttered look at the pr<X:esses in operation
and often allows an assessment of their relative importance. Moreover, for many preliminary
investiptions this extreme idealization is all that is required in the'absenCe of detailed
field data. It also serves to give an idea of the likely severity of various effects.

2. GOVERNING EQUAnONS

The equations governing the consolidation of a poroelastic medium were first
developed by Biot[7,8]. When expressed in terms of a Cartesian coordinate system they
take the following forms.

2.1. Equilibrium
In the absence of increase in body forces the equations of equilibrium can be written

as

(1)

where

[

%x
0= 0

o

o 0
a/oy 0
o o/az

a/oy 0
a/ax a/az
o a/ay

is the vector of total stress components with tensile normal stress reptded as positive
(these quantities represent the increase over the initial state of stress).
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2.2. Strain-displacement relations
The strains are related to the displacement as follows

where

is the vector of strain components of the soil skeleton, and

is the vector of Cartesian displacement components of the skeleton.

2.3. Effective stress principle
It is assumed for the saturated soil that the effective stress principle is valid, i.e.

tI==tI'-pa

where
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(2)

(3)

is the vector of effective stress increments (these quantities represent the increase over the
initial state of effective stress)

aT == (1,1,1,0,0,0)

and p is the excess pore fluid pressure.

2.4. Hooke's law
The constitutive behaviour of the solid phase (the skeleton) of the saturated medium

is governed by Hooke's law, which is

tI' == D. (4)

where

l+2G l l 0 0 0
l+2G l 0 0 0

D=
l+2G 0 0 0

G 0 0
G 0

symmetric G

with land G the Lame modulus and shear modulus, of the soil skeleton, respectively.
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The moduli A., G are related to Young's modulus, E and Poisson's ratio v of the
skeleton, i.e.

A. = Ev
(1 - 2v)(1 + v)

E
G = 2(1 + v)'

2.5. Darcy's law
It will be assumed that the flow of pore water is governed by Darcy's law, which for

a transversely isotropic soil takes the form:

kH op
V = ---

x YF oX
kHop

V = ---
, YF oy

kyop
v=---

% YF oz (5)

where kH , ky are the horizontal and vertical permeability, respectively, YF is the unit weight
of pore fluid and the z coordinate direction is aligned vertically and v"' v" v% are the
components of the superficial velocity vector relative to the soil skeleton.

2.6. Displacement equations
If Hooke's law, eqn (4), and the equation of equilibrium, eqn (1), are combined it is

found that

(6)

where

is the volume strain. This equation can be condensed to give the useful relation

(7)

2.7. The volume constraint equation
If the skeletal material is incompressible but the pore fluid is compressible then the

volume change of any element of soil must balance the difference between the volume of
fluid leaving and entering the element by flow across its boundaries plus the volume of
fluid extracted from the element by some internal sink mechanism and any change in the
volume of pore fluid. Symbolically this continuity condition may be expressed as the
volume constraint equation, i.e.

(8)

where q is the volume of fluid extracted per unit volume per unit time from the soil by the
sink mechanism, vT = (v"' v" vz ) and M is the bulk modulus (adjusted for porosity) of the
pore fluid.
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If eqn (8) is combined with Darcy's law, eqn (5), and Laplace transforms are taken of
the resulting equation, we find that

(9)

or

(10)

where

CH == k~A + 2G)/YF

CV == ky(A + 2G)/YF

are the horizontal and vertical coefficients of consolidation of the saturated porous elastic
medium.

The superior bar is used here to indicate a Laplace transform, i.e.

(11)

3. SOLUTION METHOD

In proceeding to the solution of the equations of consolidation for the case of a point
sink embedded in a saturated elastic half space, we introduce triple Fourier transforms of
the type

The corresponding inversion formula is

(12b)

Use will also be made of double Fourier transforms of the type

(l3a)
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and the corresponding inversion formula

P(X,y,z) = fooooflOoo ei(ax+/l
y

) P(cx,{J,z)da.d{J.

If we compare eqns (12) and (13) we see that

1 foo .
P*(a.,{J,y) = 21t -00 e- 1Y

: P(a.,{J,z)dz

and conversely

P(a., {J, z) = foooo eiy: P*(IX, {J, y) dr.

Sometimes it will be convenient to introduce the coordinates (p, e) where

a. = pcose

{J = psine

in which case eqns (13b) become, for polar coordinates (r, 8, z)

1
0012

"p(r,8,z) = 0 0 eiprCOS(8-£)Ppdpde.

Quite often the transform P will be able to be represented in the form

P = cosn(8 - e)F(p,z)

and thus

(l3b)

(l4a)

(14b)

(15)

(16)

(17)

(18)

where JII represents the Bessel function of order n.
In the analysis which follows solutions for the equations of consolidation are found

in terms of the Laplace transforms of the triple Fourier transforms of the field quantities.
Partial inversion of the triple Fourier transforms is then carried out in closed form using
eqn (14) or eqn (18) and the inversion is completed using a single numerical integration.
This leaves us with the Laplace transforms of the field quantities which in tum are inverted
numerically using the technique developed by Talbot[9], giving the time-dependent field
quantities.

The complete solution for a point source embedded in a half space is built up by first
considering the case of a point sink in an infinite medium and then the case of a half space
with no sink. The solutions for these problems are given in the following sections.
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4. SOLUTION FOR A POINT SINK

Let us consider a sink of strength F. located at the point (x., Y., z.) within an infinite
medium, so that

(19)

where b indicates the Dirac delta function. We introduce triple transforms having the form
of eqn (12a) and thus we see, for example, that the transform of q is

(20)

It will be convenient for our purposes to write this in the form

(21)

where

4.1. Displacement equations
In terms of triple transforms the displacement eqns (6) become

-GD2U: + (l + G)i~E: = i~P·

- GD 2U; + (l + G)ipE: = ipP·

-GD2U: + (l + G)iyE: = iyP·

i~U: + iPU; + iyU: = E:

Equations (22) have the solution

U. = _(i~)E.
" D2 u

U. = _(iP)E., D2 u

U· = -(.!L)E.z D2 u

p. = (). + 2G)E:.

(22)

(23)
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4.2. Volume constraint equation
In terms of the transforms eqn (10) becomes

If we now introduce the variables

Jl2 = CHP2jcv+ {I +C~2G)J/cv

p2 = a2 + p2

we see that

(24)

(25)

4.3. Stress components
The stress components may be obtained directly from Hooke's law, eqns (4), and so

S* = 2G(a2

- I)E*xx D2 u

S* - 2G aPE*
X7 - D2 u

where

and i, k denote any of the indices x, y, z.

(26)

4.4. Partial inversion
All the field quantities determined in this section can be expressed in terms of the

three functions B*, g*, l * where

(27a)
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Now for the double Fourier transforms

(0, g, L) = LClOClO eiYZ(O*, g*, L)* dy

and it can be shown (see Appendix) that

where Z = Iz - zll:l.
Thus on combining eqns (13a), (23), (26) and (28) we have

iO" = -a.K(}jcy

iO, = -PKQjcy

Oz = Lf},/cy

P = -(J. + 2G)RlJ/cv

!= = -2G(a.2K - R)(},/cy

!71 = -2G(p2K - R)lJ/cv
!n = 2Gp2gl}jcv

!", = -2Ga.pKlJ/cv

i!,z = - 2GPLa/cy

i!u = - 2Ga.LlJ/cv·
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(27b)

(27c)

(28a)

(28b)

(28c)

(29)
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5. SOLUTION FOR A HALF SPACE WITH NO SINK

To analyse this problem we introduce double Fourier transforms leading to represen
tations of the form given by eqn (13b). It will also be useful to introduce auxiliary quantities:

u~ = cose U" + sine U,

U~ = - sin eU" + cos eU,

S~: = cos eS,,: + sin eS,:

S~: = -sineS,,: + coseS,:

where cose = a.lp and sine = Pip.

5.1. Displacement equations
In terms of these double transforms eqns (6) become

where

(In the problem considered here it is found that U~ = 0.)
Equations (31) can be combined to give

[ 21" ] [2- ]aLv 2 ap 2
(A + 2G) - - p Ev = - - p P .az2 az2

5.2. Volume constraint equation
Equation (9b) becomes

or

5.3. Solution
The solutions of eqns (32) and (33) which remain bounded as z -+ - 00 are:

E = Ae": + (~){)Bep:
v A+G

IS = (A + 2G)Ae": + 2GBeP:

(30)

(31a)

(31 b)

(31c)

(31d)

(32)

(33a)

(33b)

(34)
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where

~ (A.+G)[ 2 2
Q = A. + 2G 1+ Cy(p - JJ )/S]'

If we substitute eqns (34) into eqn (3Ic) we find

2-

aa~Z - p20z = JJAeJ'z + 2Bp(1 - ~)ePz

and thus

Furthermore, it is not difficult to show that
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(35)

~ =( -pp )AeJ'Z + B[(....E......)~ - (I - 6Xl + pz)l..z - CePZ
, (38)2G p2 _ p2 A. + G j

6. SOLUTION FOR A SINK IN A HALF SPACE

The solution to this problem can be synthesized by superimposing the solutions found
in the previous sections. To do this it is convenient to introduce the following change of
notation

N = Szz/2G

T= iSd2G

U = iU(

w= Uz • (39)

The complete solution for the Laplace transforms of the do~ble Fourier transforms can
then be written in the form

N No
T To
P = -((}jCy) Po
a ao
w Wo

(40)

where the functions No, To, ... ,W3 are specified in Table 1. The coefficients F1, F2 , F3 may
be obtained from the boundary conditions, i.e. zero tractions and pore pressure at the
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surface of the half space, z = O. Thus we have

(41)

where all of the coefficients in the above equation are evaluated at z =O. Once the unknown
coefficients, F1 , F2 , F3 have been found as the solution to eqns (41), any of the transforms
of the field quantities may be evaluated from eqns (40). These solutions should be precisely
the same independent of which altemative,t specified in Table 1, is used.

7. CALCULATION OF FIELD QUANTITIES

Expressions for N, T, P, G, "' were developed in the previous section. It will be
observed for a point source that these are all functions of p. Thus we see from eqn (19)
that

(42)

Now we can easily establish that G. = 0 and thus that

a" = coseG(

Oy = sineG~.

Thus the expressions for the Laplace transforms of displacement can be written as

u" = f:oof'oo ei(.",,+/ly) coseG#)da. dP

uy = IOOooIOOoo el(""+'Y)sineG~p)da.dP

and hence

roo r2
"

U, =J
o

J
o

e1p,co.(II-£'cos(8 - e)U~p)pdedp

It is not difficult to show that UII =O. Similarly we may show for the stresses that

all: =o.

(43)

(44)

t Alternative I corresponds to a sinsJc sink at z = - h in an unbounded medium while Alternative 2corresponds
to a sinsJc sink and an image source placed at z = h in an unbounded medium.
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Fig. 2. Isochrones of excess pore pressure on the vertical axis for cvt/1t2 - 0.1 and 00.

The single infinite integrals contained in eqns (42)-(44) have been evaluated numerically,
using Gaussian quadrature.

Evaluation of the field quantities is finally achieved by inversion of the appropriate
Laplace transforms. As mentioned earlier, this is also done numerically, using the efficient
algorithm developed by Talbot[9].

8. RESULTS

The solutions have been evaluated for the particular case where the soil skeleton has
a Poisson's ratio v == 0.25 and the results have been summarized in Fils 2-4. In discuIIina
the cft'ccts ofpore ftuid compressibility it is convenient to de6De the relative compreaibility
as MJK where M is the bulk modulus (adjusted for porosity) of the pore fluid and K is
the bulk modulus of the elastic solid skcJcton, given by

2(1 + v)
K =3(1 _ 2v) G.

Fiaure 2 shows isocbrones of excess pore pressure on the vertical Dis throup the
point link for an isotropic soil (calcv - 1) and for DOD-dimensiOnaJ times c.,t/h2 - O.1lDd
00. The symbol t is used here to represent the elapsed time since the COIDIIleDCeIDeDt of
pumpina- In an cues the c:hanaes in pore pressure due to pumpin. are actually suctions
and this is indicated by the neptive values of p. When the excess pore pressures are
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Fig. 3. Isochrones of surface settlement for the isotropic case.

normalized as indicated in Fig. 2 (i.e. using the horizontal permeability kH) the steady state
response (cyt/h2 = oo) is independent of both the degree of anisotropy of permeability (i.e.
k.Jky or c.JCy) and also of the degree of compressibility of the pore fluid (i.e. MIK). Indeed
it is possible to find a closed form expression for the excess pore pressure distribution at
large time and this has been shown by the authors[lO] to be

where '1'2 = c.JCy = k.Jky.
Along the axis r = 0, this of course reduces to

(QYF)[ 1 1 ]
p = - 41tkH Iz + hi - Iz - hi (46)

where the dependence on kH alone is clearly seen.
At intermediate times the normalized excess pore pressures along the axis are a

function of the relative compressibility of the pore fluid MfK, as illustrated in Fig. 2 for
the time corresponding to cytlh2 = 0.1. The results show that the more compressible the
pore fluid, i.e. the smaller the value of MIK, then the slower is the development of the
excess pore suctions and hence the slower will be the consolidation of the soil around the
sink. However, it is interesting to note that even during the transient period the isochrones
of normalized excess pore pressure along the axis are practically independent of the degree
of anisotropy of permeability for all cases of MIK considered, e.g. the differences between
isochronCs for c.JCy = 1 and 10 can hardly be plotted at the scale shown on Fig. 2. Of
course, away from the vertical axis the excess pore pressures becomemore highly dependent
on the degree of anisotropy of the soil.

Typical results for displacement are indicated on Figs 3 and 4 where isochrones of
surface settlement have been plotted against radial distance from the vertical axis.
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Fig. 4. Isochrone of surface settlement for an anisotropic case: cHlcv = 10.

The settlement values have been plotted in non-dimensional form and selected cases
corresponding to MIK = OJ, I, 10 and 00 have been shown. Figure 3 shows the surface
profiles for an isotropic soil (cHiCy =1) and Fig. 4 for an anisotropic soil (cHicy = 10). On
each figure the settlements have been normalized using the vertical permeability ky and
thus Figs 3 and 4 allow a comparison of two soils having the same vertical permeability
but different horizontal permeabiJities. It is obvious that at any given location of the
surface and for any given value of MIK the surface settlements at any particular time are
smaller in the anisotropic soil than in the isotropic soil, but that the settlements are more
uniform in the anisotropic case. The figures also show that the relative compressibility of
the pore fluid has a marked influence on the time-dependent surface settlements. Generally,
the more compressible the pore fluid (i.e. smaUer M/K), the slower is the settlement. The
rate of settlement of a soil for which MIK = 0.1 is more than 10 times slower than a soil
having an incompressible pore fluid (MIK = (0).

The long-term settlements are independent of the compressibility of pore fluid and it
is perhaps worth noting their closed form expressions. For the general case the authors
reported[10] that the vertical displacement of a point on the surface at large time is given
by

(47)

For the equivalent isotropic deposit eqn (47) becomes

(48)

9. CONCLUSIONS

A solution has been found for the consolidation of a saturated elastic half space
broupt about by the commencement of pumpina of the pore fluid Crom a link embedded
within the half space. The medium was assumed to be homopneous and isotropic with
regard to deformation properties but transversely isotropic with reprd to flow of pore
fluid. The governing equations of the problem have been solved in Laplace transform

lAS 23:3-D
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Table I.

0 0
Transform All. 1 All. 2 2 3

N _p2K. _p2(K. - K.)
p2 e•..

[C:G)O-I +(1-0)(1 +PZI]eP'JA2 _ p2 eP'

T pL. P(L. - LJ
PJAeP'

-eP' [C. ~ G)O -(I - 0)(1 + PZI]eP'- JA2 _ p2

P (Ao + 2G)H. (Ao + 2G)(H. - H.) (Ao + 2G)e'" 0 2GeP'

a -p-e'" eP'
~[(A:aG)O-(I-O)(1 +PZ)]eP'pK. P(K. - K.) JA2 _ p2

P

W -L. -(L. - L.) _JA_f!" e'" z(1 - o)eP'JA2 _ p2 P

1e-·z, 1e-aZ•
H. ""2-JA-' H.",,--

2 JA

K = 1 [e- PZ• _ e-.Z'J 1 [e- PZ• e-.Z'JK= ---
• 2(}A2 - p2) P JA' • 2(}A2 - p2) P JA

L sgn(-h - z)[ -pZ -aZ] L "" sgn(h - z}[ -pz. _ -.z.]• = 2(}A2 _ p2) e • - e', • 2(}A2 _ p2) e e

Z. = Iz + hi, Z. = lz -hi.

space requiring the use of double and triple Fourier transforms. Inversion of some of these
transforms has been carried out using numerical integration.

Some particular solutions have been evaluated for an elastic medium having a
Poisson's ratio v = 0.25. These indicate that the major effects of the anisotropy are as
follows:

(1) At all comparable non..<Jimensional times the values of excess pore pressure down
the vertical axis containing the sink are virtually independent of the vertical permeability
kv but inversely proportional to the horizontal permeability kH • (In this context the non·
dimensional time factor Cv includes the term kv.)

(2) At all times the profiles of surface settlement are in the form of an axi-symmetric
trough. The deepest part of the trough is centred above the sink and for different.soils
with the same value of kv the trough is deepest and the sides steepest in the isotropic case.
As the ratio kulkv is increased the profile of surface settlement becomes more uniform, i.e.
the settlement trough becomes shallower and more gradual.

It has also been demonstrated that the compressibility of the pore fluid can have a
significant influence on the rate of consolidation of the soil surrounding the point sink and
thus on the settlement of the surface of the half space. Generally the more compressible
the pore fluid then the slower will be the development of excess pore suctions and hence
the slower the rate of surface settlement.

The solutions presented may have application in practical problems such as dewatering
operations in compressible soils and in the extraction of fluid and gas from petroleum
bearing deposits. In such cases the time to reach steady state and the final profile of surface
settlement could be of great interest.
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APPENDIX

The aim of this Appendix is to verify the expressions for n, K, L contaiDed in eqns (28~ We proceed as
follows.

Let

where p has a positive real part. Then

l
eo -,1'1 1

~ = Cosyz_e-dz =-2--2'
o P P + Y

Thus using the Fourier inversion theorem

Also, let

.J. feo -i7' s8O (Z) -,I'ld0/= - e ----e z_eo 2

=Leo isinyze-,I'ldz

iy
=p2 + y2'

Thus from the Fourier inversion theorem

The results of eqns (28) then follow.


